Links Between Agri-Food Value Chains & Nutrition

Policy Dialogue Shaping AFVCs for Nutrition

Serendib Suites, Blantyre 23–24 July 2019

Alexander A. Kalimbira

PSLC, JC, MSCE, Dip, BSc, MSc, PhD

Associate Professor of Human Nutrition
Department of Human Nutrition & Health
Faculty of Food & Human Sciences
LUANAR @ Bunda

Inadequate Calorie Intake

Source: Our World in Data (2019)

Building Blocks of the Human Body

Building Blocks of the Human Body

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Pnictogens	16 Chalcogens	17 Halogens	18
1 - -	- lydrogen	Atomic Sym _{Name} Weight	12		2 8		I an	/letals	3-1		Nonme	z					0	2 He Helium 4.0026
	ithium	4 Be Beryllium 9.0122	Mag	_	2	Alkali meta	kaline	noids	Transition metals	alloids Post-transition metals	Other nonmetals	(C)	5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
1	1 Na odium	12 Mg Magnesium 24.305	24.3	nesium 05		als	Acti	noius		sition	u,	lases	13 Al	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S	17 CI Chlorine 35.45	18 Ar Argon 39.948
1 	9 (otassium	20 Ca Calcium	Sc Scandium	22 Ti Titanium 47.867	23 V Vanadium 50.942	Cr Chromium 51.996	25 Mn Manganese 54.938	Fe	27 Co Cobalt 58.933	Ni Nickel	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.630	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
3	7 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenur 95.95	43 TC Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
5	5 CS aesium	56 Ba Barium 137.33	57–71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
8 F	7 Fr	88 Ra Radium (226)	89–103	104 Rf Rutherfordiu (267)	105 Db	106 Sg Seaborgium (269)	107 Bh	108 Hs	109 Mt Meitnerium (278)	110 D S	111 Rg Roentgeniur (282)	112 Cn	113 Nh	114 FI	115 Mc	116 LV	117	118 Og Oganesson (294)
IX.	220)	(220)				with no s	stable isc	topes, th	ne mass	number	of the is	otope wit	th the lor	igest hal	f-life is in	parenth	eses.	(234)
										yright © 19								71
				57 La Lanthanum	Ce Cerium	Praseodymi	Nd Neodymium	Pm Promethium	62 Sm Samarium	Eu Europium	Gd Gadolinium		Dy Dysprosium	Holmium	68 Er Erbium	Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
				138.91 89 Ac	90 Th	91 Pa	92 U	93 Np	150.36 94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 ES	167.26 100 Fm	168.93 101 Md	173.05 102 No	174.97 103 Lr
				Actinium (227)	Thorium 232.04	Protactinium 231.04	_				Curium (247)	Berkelium (247)		Einsteinium (252)	Fermium (257)			Lawrencium (266)

Alexander A. Kalimbira, PhD

Agri-Food Value Chains for Nutrition

Agriculture Nourishes Us All

- Direct source of food
- Livestock provide nutrients (minerals, proteins, vitamins) in the form that our bodies <u>understand</u> & <u>love</u> to have (bioavailability)
- Animal source foods are preferred by most household members

Is Malawi a livestock country?

"Malawi can be a livestock country but at the moment it is not and will for sometime be dependent on imports, unless radical revolutionary strategies like in the crops sub-sector are immediately seriously implemented."

Prof. Richard Phoya (2009)

We are used to stunting stories

Trends in the burden of stunting in Malawi (1992 to 2015/16)

Global Prevalence of Stunting

Source: UNICEF, WHO, WB (2018)

Short-Statured Adults

Selenium Deficiency in Malawi

Source: Phiri, F.P. et al (2019)

Probability that plasma Se in WRA is below the specified threshold

- Exceptionally unlikely (0–1%)
- Very unlikely (1–10%)
- Unlikely (10–33%)
- About as likely as not (33-66%)
- Likely (66-90%)
- Very likely (90–99%)
- Virtually certain (99–100%)

Alexander A. Kalimbira, PhD

Agri-Food Value Chains for Nutrition

Dietary Zn Supplies in Africa

Dietary mineral supplies in Africa

Edward J. M. Joy^{a,b,†}, E. Louise Ander^{b,†}, Scott D. Young^a, Colin R. Black^a, Michael J. Watts^b, Allan D. C. Chilimba^c, Benson Chilima^d, Edwin W. P. Siyame^e, Alexander A. Kalimbira^e, Rachel Hurst^f, Susan J. Fairweather-Tait^f, Alexander J. Stein^g, Rosalind S. Gibson^h, Philip J. Whiteⁱ and Martin R. Broadley^{a,*}

11

ZnD: Public Health Problem in Malawi

Prevalence of Zn deficiency (low serum Zn) in Malawi (NSO, 2017)

Too little anima food? (Ferguson et al.,1989)

Contribution of animals foods, cereals & other plant foods to Zn intake in by season

From "Fundamentals of Clinical Nutrition" by R. L. Weinsier copyright 1993 by Mosby-Year Books N.Y.

Fig. 6-8 Clinical findings of niacin deficiency before (A) and after (B) therapy in an alcoholic patient.

Pellagra

Pellagra: Does it exist today?

Am. J. Trop. Med. Hyg., 96(5), 2017, pp. 1244–1247 doi:10.4269/ajtmh.16-0423 Copyright © 2017 by The American Society of Tropical Medicine and Hygiene

An Outbreak of Pellagra in the Kasese Catchment Area, Dowa, Malawi

George Matapandeu, ¹ Samuel H. Dunn, ² and Patti Pagels²*

¹Orant Charities, Primary Care Clinic, Kasese, Dowa, Malawi; ²Department of Family and Community Medicine, University of Texas Southwestern, Dallas, Texas

Abstract. Pellagra is a deficiency of niacin or its amino acid precursor, tryptophan, which presents with the classic four Ds: the characteristic dermatitis, diarrhea, dementia, and eventually death if left untreated. The incidence of pellagra is quite rare presently because of increased awareness and strategies such as vitamin fortification. However, the deficiency is still present in cultures that rely on maize as their primary source of sustenance. We report a recent outbreak in a catchment area in Kasese, Malawi, of 691 cases of pellagra which were successfully treated with niacin supplementation. We present this short report to highlight the importance of educating providers of at-risk populations about this diagnosis and to consider solutions for these populations to prevent further deficiencies.

INTRODUCTION

Pellagra is a deficiency of niacin and/or tryptophan, the amino acid precursor to niacin. The signs and symptoms form the classic four Ds: dermatitis, diarrhea, dementia, and death. First described in the eighteenth century, pellagra was a deadly disease that affected both developing and developed countries. With further understanding of the pathophysiology of pellagra in the twentieth century and vitamin fortification endeavors in the United States² and

The patients had no history of concurrent rheumatologic or neurologic symptoms. Approximately 60% of the patients were female and 96% of the affected patients were over the age of 15. The majority of the patients were in extreme poverty and from remote tribal areas.

Initially, these patients were treated with a generic emulsifying skin ointment with little improvement. After seeking input with colleagues in Malawi and the United States, pellagra was finally considered as a possible diagnosis. A treatment program was started in October 2015 in which

Pellagra (Chikwakwa)

Pellagra (Chikwakwa)

Osteoporosis

Failure to lay down a strong bone matrix in early years ↑ risk of osteoporosis in later years

Healthy Osteoporotic bone bone Why osteoporosis is irreversible: once you've lost bone matrix, you've lost the foundation on which to build further bone

Others have more than enough

21 Alex

Prevalence of Overnutrition

Source: UNICEF, WHO, WB (2018)

Trends in Prevalence of Overnutrition

Burden of overnutrition in Malawi

Data Sources: From 2000, 2004, 2010 & 2015-16 MDHS reports

Atherosclerosis — Blocked vessels

https://www.youtube.com/watch?v=zfAqC1oPbkw

What causes the most premature death?

			_	_
2007 rank	king 20	017 ranking	% change 2007-2017	
HIV/AIDS	0 0	HIV/AIDS	-70.0%	
Neonatal disorders	2 2	Neonatal disorders	-10.9%	
Malaria	33	Lower respiratory infect	-20.5%	
Lower respiratory infect	4	Malaria	-46.5%	
Diarrheal diseases	5	Diarrheal diseases	-35.7%	
Congenital defects	6	Congenital defects	-8.5%	
Tuberculosis	0-0	Tuberculosis	-5.7%	
rotein-energy malnutrition	8	Meningitis	-12.2%	
Meningitis	9	Ischemic heart disease	11.6%	
Ischemic heart disease	10	Protein-energy malnutrition	-29.1%	

Source: http://www.healthdata.org/malawi

Only ischemic heart disease (IHD) had a +ve increased between 2007 and 2017

IHD: heart problems caused by narrowed heart arteries. When arteries are narrowed, less blood & oxygen reaches the heart muscle.

"MSMEs" have capacity to change

Average oil separated from peanut butter (Day 1 to 84) before & after intervention

Source: Moyo, T. (2017)

"MSMEs" have capacity to change

Sample	Faecal Coliforms(MPN/100ml)						
Code	Before Intervention	After Intervention					
R	Positive	Negative					
S	Negative	Negative					
Т	Negative	Negative					
U	Positive	Negative					
V	Positive	Positive					
W	Positive	Positive					
X	Positive	Positive					
Y	Positive	Positive					
Z	Positive	Negative					

Source: Moyo, T. (2017)

Are nutritious foods accessible?

Tackling undernutrition through market-based solutions often fails to reach the (poorest) people

Solution

Mandatory & large-scale <u>fortification</u> e.g. cooking oil, flour, sugar to deal with vitamin & mineral deficiencies

Approach relies on a value chain involving producers, processors, retailers & consumers

Problems With Compliance

- Micro, small & medium enterprises (MSMEs) often lack the skills, resources & regulatory incentives to comply
- Competition from non-compliant MSMEs means large companies may underdose products or simply sell at a premium price to wealthy consumers
- Government or statutory agencies have low regulatory capacity & little access to food testing technologies

Believability of Claims of Quality

With no visible difference between fortified & unfortified flour, the nutritional value (& additional cost) of fortified flour must be taken on trust

Believability of Claims of Quality

THAN A PH

"My flour includes special nutrients that make it healthier for your children".

31

Making Nutritious Foods Accessible

- How do households source food?
 - How are practices changing in different settings?
 - Need data on whether & how specific groups are being reached

Making Nutritious Foods Accessible

- What formal-informal linkages in food systems exist?
 - How do they operate?
 - What innovations can increase access to nutritious foods for households?
- Does government have capacity to enforce regulations & improve information available to consumers?
 - Certification
 - Franchising
- Public sector programmes to reach the poorest & most marginalised households?

How to Apply AFVC Concepts for Nutrition

"... there is not just one way to conduct a value-chain analysis, apply a value-chain approach, or examine the implications of an existing value chain."

Hawkes & Ruel (2011)

- Are there explicit nutrition goals?
 - There is not a single "value-chain-for-nutrition" approach
 - All value-chain approaches to nutrition should focus on a clearly stated, outcome-oriented nutrition goal
- What nutrition problems are being addressed?
 - Identify core food & nutrient gaps
 - The gaps & associated health problems can be addressed by targeting one/more food value chains

- Create & capture value for nutrition
 - Consider the value for nutrition (not just economic value)
 - Increased economic value for vulnerable value-chain actors can be associated with increased value for nutrition

❖ Be expansive but tailor solutions to context

- Search for solutions using the whole value chain (including different sectors & actors at different scales)
- Application of solutions should be tailored to circumstance

Focus on coordination of the whole chain

- May involve intervening at several points along the chain
- Taking a few actions to fix coordination problems
- Creating incentives for change along the chain
- Requires developing alliances among the actors involved

37

- Add value not only for nutrition but also for actors along the value chain
 - Nutrition-oriented activities should become a solution to problems faced by actors as well
 - Solutions for nutrition that do not work for actors
 within the value chain are not value-chain solutions
 - Adding value for both consumers & actors along the value chain

- Take a broader view of "adding value" for producers & consumers
 - Are consumers willing to pay for greater nutritional value or desirability?
 - Producers able to produce more to supply a larger market
- ❖ Focus: meeting, increasing, & creating demand
 - Including consumers' unmet & uncreated demand
 - Poor people may have demand for more diverse diets that include a variety of micronutrient-rich foods such Kuroiler chickens

Create a policy

environment in

which better nutrition

is valued

 Policy environment can create incentives for actors in the chain to value nutrition & change their behavior accordingly

